Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review

Sergey Levine

Presented by: Achint Kumar

Duke University

June 27, 2023

- 2 Maximum Entropy Reinforcement Learning
- Some Generalized Algorithms

Classical Conditioning Operant Conditioning Reinforcement Learning

Desiderata

Introduction

- Classical Conditioning
- Operant Conditioning
- Reinforcement Learning

2 Maximum Entropy Reinforcement Learning

- Motivation
- Probabilistic Inference
- Variational Inference

3 Some Generalized Algorithms

- Soft Q-Learning
- Entropy Regularized Policy Gradient
- Soft actor-critic Algorithm

Classical Conditioning Operant Conditioning Reinforcement Learning

Introduction

Classical Conditioning (Pavlov)

- Reward associated with stimuli (or state), r(s_t)
- Motivates TD learning

Classical Conditioning Operant Conditioning Reinforcement Learning

Introduction

- Classical Conditioning (Pavlov)
 - Reward associated with stimuli (or state), r(s_t)
 - Motivates TD learning

Operant Conditioning (Thorndike, Skinner)

- Reward associated with actions, r(a_t)
- Motivates Policy Gradient for multi-arm bandits

4 / 30

Introduction

- Classical Conditioning (Pavlov)
 - Reward associated with stimuli (or state), r(s_t)
 - Motivates TD learning

Operant Conditioning (Thorndike, Skinner)

- Reward associated with actions, r(a_t)
- Motivates Policy Gradient for multi-arm bandits

Reinforcement Learning

- Reward associated with both stimuli and actions, r(st, at)
- Motivates
 Q-learning,
 actor-critic learning

4/30

Classical Conditioning Operant Conditioning Reinforcement Learning

Reward Prediction Error Hypothesis

- Dopamine neurons in VTA were recorded in classical conditioning experiment (Schultz, et.al. 1997)
- Define value function, V(st) which measures predicted reward
- Dopamine response can be modelled as,

$$\delta(t) = r(s_t) + \frac{dV}{dt}$$
$$= r(s_t) + V(s_{t+1}) - V(s_t)$$

 $\delta(t)$ is RPE

 Value function can be learnt by Temporal Difference(TD) learning algorithm. Update rule:

 $V(s_t) \leftarrow V(s_t) + \alpha \delta(t)$

Achint Kumar

CTN Meeting

Classical Conditioning Operant Conditioning Reinforcement Learning

Mult-arm bandit problem

 Each bandit(slot machine) has a reward probability distribution. Find a *policy* π(a) that maximizes total reward:

$$\max_{\pi} \sum_{t=0}^{T} \mathbb{E}_{\pi} \left[r(a_t) \right]$$

Mult-arm bandit (slot machines)

Image: A matrix and a matrix

Classical Conditioning Operant Conditioning Reinforcement Learning

Policy Gradient algorithm

 Parameterize policy with θ as π_θ(a_t). For bandit problem it could be softmax function,

$$\pi_{\theta}(a_t) = \frac{e^{\theta_{a_t}}}{\sum_b e^{\theta_b}}$$

• Total average return is,

$$J(\theta) = \sum_{t=0}^{T} \mathbb{E}_{\pi} \left[r(a_t) \right]$$

• Perform gradient ascent on θ ,

$$eta \leftarrow heta + lpha
abla J(heta)$$

= $heta + lpha \sum_{t=1}^{T} \sum_{a_t} [r(a_t)
abla \pi_{ heta}(a_t)]$
= $heta + lpha \sum_{t=1}^{T} \sum_{a_t} [(r(a_t) - b_t)
abla \pi_{ heta}(a_t)]$, including baseline

Classical Conditioning Operant Conditioning Reinforcement Learning

Reinforcement Learning

Value function $V(s) \rightarrow Q(s, a), A(s, a)$ Reward function $r(a), r(s) \rightarrow r(a, s)$ Policy function $\pi(a) \rightarrow \pi(a|s)$

Advantage function is defined as,

$$A(s,a) = Q(s,a) - V(s)$$

The elements are closely related to reward r(s, a)

Classical Conditioning to Reinforcement Learning

We saw for classical conditioning,

$$V(s_t) \leftarrow V(s_t) + \alpha[r(s_t) + V(s_{t+1}) - V(s_t)]$$

For reinforcement learning replace $V(s_t) \rightarrow Q(s_t, a_t)$. Algorithm:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t, a_t) + Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t, a_t) + \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

Image: A mathematical states of the state

Classical Conditioning to Reinforcement Learning

We saw for classical conditioning,

$$V(s_t) \leftarrow V(s_t) + \alpha[r(s_t) + V(s_{t+1}) - V(s_t)]$$

For reinforcement learning replace $V(s_t) \rightarrow Q(s_t, a_t)$. Algorithm:

- Initialize Q(s,a) randomly. Q(FINAL,.)=0
- 2 Use ϵ -greedy to determine policy $\pi(a|s)$
- **③** Go from state-action s_t , a_t to s_{t+1} using policy, $\pi(a|s_t)$.
- Update action-value function using on-policy learning (SARSA algorithm),

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t, a_t) + Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

where a_{t+1} derived from policy $\pi(a|s_{t+1})$.

Alternatively, update action-value function using off-policy learning (Q-learning algorithm)

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t, a_t) + \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

< □ > < □ > < □ > < □ >

Solution Repeat 1-4 till s_{t+1} is final state.

Repeat 5 until Q function stabilizes

Classical Conditioning to Reinforcement Learning

We saw for classical conditioning,

$$V(s_t) \leftarrow V(s_t) + \alpha[r(s_t) + V(s_{t+1}) - V(s_t)]$$

For reinforcement learning replace $V(s_t) \rightarrow Q(s_t, a_t)$. Algorithm:

- Initialize Q(s,a) randomly. Q(FINAL,.)=0
- 2 Use ϵ -greedy to determine policy $\pi(a|s)$
- **③** Go from state-action s_t , a_t to s_{t+1} using policy, $\pi(a|s_t)$.
- Update action-value function using on-policy learning (SARSA algorithm),

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t, a_t) + Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

where a_{t+1} derived from policy $\pi(a|s_{t+1})$.

Alternatively, update action-value function using off-policy learning (Q-learning algorithm)

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t, a_t) + \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

< □ > < □ > < □ > < □ >

Solution Repeat 1-4 till s_{t+1} is final state.

Repeat 5 until Q function stabilizes.

Classical Conditioning Operant Conditioning Reinforcement Learning

Q Learning

Q function update rule is given by,

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t, a_t) + \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$$

we will see generalization of this rule (soft Q-learning) later.

Operant Conditioning to Reinforcement Learning

Earlier we saw, policy gradient algorithm.

- Parameterize policy, $\pi_{\theta}(a|s)$ (more general than before)
- 2 Optimize average expected reward, $J(\theta)$ by,

$$\theta_{t+1} = \theta_t + \alpha \nabla J(\theta_t)$$

In actor-critic learning, we parameterize both policy and value(or Q or A) function. It combines policy gradient with TD learning.

- **9** Parameterize policy, $\pi_{\theta}(a|s)$ with θ and value, $V_w(s)$ with w.
- **2** In state s, take action a and observe s' and r(s, a). Update θ and w by,

$$w \leftarrow w + \alpha_w \delta \nabla V_w(s)$$

$$\theta \leftarrow \theta + \alpha_\theta \delta \nabla \log \pi_\theta(a|s)$$

where $\delta = r(s, a) + V(s') - V(s)$

Classical Conditioning Operant Conditioning Reinforcement Learning

Actor-Critic Model

- Actor: Dorsal Striatum
- Critic: Ventral Striatum. Sends TD error to actor,

Good action, $\delta > 0$ Bad action, $\delta < 0$

• TD Error: VTA

Motivation Probabilistic Inference /ariational Inference

Desiderata

Introduction

- Classical Conditioning
- Operant Conditioning
- Reinforcement Learning

2 Maximum Entropy Reinforcement Learning

- Motivation
- Probabilistic Inference
- Variational Inference

3 Some Generalized Algorithms

- Soft Q-Learning
- Entropy Regularized Policy Gradient
- Soft actor-critic Algorithm

Introduction

Regular formulation:

$$\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} r_t\right]$$

Motivation

2 Maximum entropy formulation

$$\max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} r_t + \beta \mathcal{H}(\pi(a_t|s_t))\right]$$

문 문 문

Motivation-1

Motivation Probabilistic Inference Variational Inference

- Stochastic behaviour is more robust in constantly changing environments
- Ability to model suboptimal behaviour is useful for inverse RL (determining reward function from behaviour)

Introduction Motivation Maximum Entropy Reinforcement Learning Some Generalized Algorithms Variational Inference

Motivation-2

• We assume that there are observable binary optimality variables \mathcal{O}_t where, $\mathcal{O}_t = 1$ denotes time step t is optimal and $\mathcal{O}_t = 0$ denotes that it is not optimal. We define,

$$p(\mathcal{O}_t = 1 | s_t, a_t) = \exp(r(s_t, a_t))$$

Note, all rewards must be negative for normalizability. There is no loss of generality.

(a) graphical model with states and actions

(b) graphical model with optimality variables

< ロ > < 同 > < 三 > < 三 >

Motivation Probabilistic Inference Variational Inference

Applying Bayes Rule

Let
$$\tau = \{s_{1:T}, a_{1:T}\}$$
. By Bayes rule,

$$p(\tau|\mathcal{O}_{1:T} = 1) = \frac{p(\tau)p(\mathcal{O}_{1:T} = 1|\tau)}{p(\mathcal{O}_{1:T} = 1)}$$

\$\propto p(s_1) \propto t_{t=1}^T p(s_{t+1}|s_t, a_t) exp(r(s_t, a_t))\$
\$= \begin{bmatrix} p(s_1) \propto t_{t=1}^T p(s_{t+1}|s_t, a_t) \end{bmatrix} exp(\begin{bmatrix} t_t r(s_t, a_t)) \end{bmatrix} = \begin{bmatrix} p(s_1) \propto t_{t=1}^T p(s_{t+1}|s_t, a_t) \end{bmatrix} exp(\begin{bmatrix} t_t r(s_t, a_t)) \end{bmatrix} = \begin{bmatrix} p(s_1) \propto t_{t=1}^T p(s_{t+1}|s_t, a_t) \end{bmatrix} exp(\begin{bmatrix} t_t r(s_t, a_t)) \end{bmatrix} = \begin{bmatrix} p(s_1) \propto t_{t=1}^T p(s_{t+1}|s_t, a_t) \end{bmatrix} exp(\begin{bmatrix} t_t r(s_t, a_t)) \end{bmatrix} = \begin{bmatrix} p(s_1) \propto t_{t=1}^T p(s_{t+1}|s_t, a_t) \end{bmatrix} exp(s_1, s_1) \end{bmatrix} = \begin{bmatrix} p(s_1) \propto t_{t=1}^T p(s_{t+1}|s_t, a_t) \end{bmatrix} exp(s_1, s_1) \end{bmatrix} = \begin{bmatrix} p(s_1) \propto t_{t=1}^T p(s_1, s_1) \end{bmatrix} exp(s_1, s_1) \end{bmatrix} = \begin{bmatrix} p(s_1) \propto t_{t=1}^T p(s_1, s_1) \end{bmatrix} exp(s_1, s_1) \end{bmatrix} = \begin{bmatrix} p(s_1) \propto t_{t=1}^T p(s_1, s_1) \end{bmatrix} exp(s_1, s_1) \end{bmatrix} = \begin{bmatrix} p(s_1) \end{bmatrix} exp(s_1, s_1) \end{bmatrix} exp(s_1, s_1) \end{bmatrix} = \begin{bmatrix} p(s_1) \end{bmatrix} exp(s_1, s_1) \end{bmatrix} exp(s_1, s_2) \end{bmatrix}

- Most probable trajectory is one with highest reward. But suboptimal trajectories are also possible with exponentially decreasing probability.
- Explains stochastic monkey behaviour.

Motivation Probabilistic Inference Variational Inference

Applying Bayes Rule

Let
$$\tau = \{s_{1:T}, a_{1:T}\}$$
. By Bayes rule,

$$p(\tau|\mathcal{O}_{1:T} = 1) = \frac{p(\tau)p(\mathcal{O}_{1:T} = 1|\tau)}{p(\mathcal{O}_{1:T} = 1)}$$

\$\propto p(s_1) \propto t_{t=1}^T p(s_{t+1}|s_t, a_t) exp(r(s_t, a_t))\$
\$= \begin{bmatrix} p(s_1) \propto t_{t=1}^T p(s_{t+1}|s_t, a_t) \end{bmatrix} exp(t(s_t, a_t))\$

- Most probable trajectory is one with highest reward. But suboptimal trajectories are also possible with exponentially decreasing probability.
- Explains stochastic monkey behaviour.

Policy Search as Probabilistic Inference

Goal is to find optimal policy $\pi(a_t|s_t, \mathcal{O}_{t:T})$. This will be done by computing backward messages. We will need,

- State-action backward message: $\beta_t(s_t, a_t) = p(\mathcal{O}_{t:T}|s_t, a_t)$. It is probability of optimality from time t to T given that it begins at (s_t, a_t) .
- State backward message: $\beta_t(s_t) = p(\mathcal{O}_{t:T}|s_t)$. It is probability of optimality from time t to T given that it begins at s_t .

$$\beta_t(s_t) = p(\mathcal{O}_{t:T}|s_t) = \int p(\mathcal{O}_{t:T}|s_t, a_t) p(a_t|s_t) da_t$$
$$= \mathbb{E}_{a_t \sim p(a_t|s_t)} [\beta_t(s_t, a_t)]$$

Action prior, $p(a_t|s_t)$ is assumed to be uniform without loss of generality.

Message Passing Algorithm for backward message-1

The recursive message passing algorithm for computing $\beta_t(s_t, a_t)$ proceeds from the last time step t = T backward through time to t = 1. Base case, at t = T,

$$\beta_t(s_T, a_T) = p(\mathcal{O}_T | s_T, a_T) = \exp(r(s_T, a_T))$$

Recursive case is given as following,

$$\begin{split} \beta_t(s_t, a_t) &= p(\mathcal{O}_{1:t}|s_t, a_t) = \int p(\mathcal{O}_{t:T}, s_{t+1}|s_t, a_t) ds_{t+1} \\ &= p(\mathcal{O}_t|s_t, a_t) \int p(\mathcal{O}_{t+1:T}|s_{t+1}) p(s_{t+1}|s_t, a_t) ds_{t+1} \\ &= p(\mathcal{O}_t|s_t, a_t) [\mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} [\beta_{t+1}(s_{t+1})] \end{split}$$

Motivation Probabilistic Inference Variational Inference

Message Passing Algorithm for backward message-2

Base case:

$$\beta_T(s_T, a_T) = p(\mathcal{O}_T | s_T, a_T) = \exp(r(s_T, a_T))$$
$$\beta_T(s_t T = \mathbb{E}_{a_T \sim p(a_T | s_T)}[\beta_T(s_T, a_T)]$$

2 Run loop from t = T - 1 to 1

$$\beta_t(s_t, a_t) = p(\mathcal{O}_t|s_t, a_t) \mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} [\beta_{t+1}(s_{t+1})]$$
$$\beta_t(s_t) = \mathbb{E}_{a_t \sim p(a_t|s_t)} [\beta_t(s_t, a_t)]$$

Motivation Probabilistic Inference Variational Inference

Connecting to standard RL

Run loop from t = T - 1 to 1

$$\beta_t(s_t, a_t) = p(\mathcal{O}_t|s_t, a_t) \mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} [\beta_{t+1}(s_{t+1})]$$

$$\beta_t(s_t) = \mathbb{E}_{a_t \sim p(a_t|s_t)} [\beta_t(s_t, a_t)]$$

Take logs of both equation. Define,

 $V(s_t) = \log \beta_t(s_t)$ $Q(s_t, a_t) = \log \beta_t(s_t, a_t)$

First equation gives,

$$Q(s_t, a_t) = \log[p(\mathcal{O}_t | s_t, a_t)] + \log \mathbb{E}_{s_{t+1} \sim p(s_{t+1} | s_t, a_t)} [\exp[V(s_{t+1})]]$$

= $r(s_t, a_t) + \max_{s_{t+1}} V(s_{t+1})$ BAD!

Second equation gives,

$$V(s_t) = \log \int \exp(Q(s_t, a_t)) da_t \approx \max_{a_t} Q(s_t, a_t)$$

It is like value iteration algorithm for deterministic dynamics. Problem with stochastic dynamics.

Probabilistic Inference

Connecting to standard RL

Run loop from t = T - 1 to 1

$$\beta_t(\mathbf{s}_t, \mathbf{a}_t) = p(\mathcal{O}_t | \mathbf{s}_t, \mathbf{a}_t) \mathbb{E}_{\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)} [\beta_{t+1}(\mathbf{s}_{t+1})]$$

$$\beta_t(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim p(\mathbf{a}_t | \mathbf{s}_t)} [\beta_t(\mathbf{s}_t, \mathbf{a}_t)]$$

Take logs of both equation. Define,

$$V(s_t) = \log eta_t(s_t)$$

 $Q(s_t, a_t) = \log eta_t(s_t, a_t)$

First equation gives,

$$Q(s_t, a_t) = \log[p(\mathcal{O}_t | s_t, a_t)] + \log \mathbb{E}_{s_{t+1} \sim p(s_{t+1} | s_t, a_t)} [\exp[V(s_{t+1})]]$$

= $r(s_t, a_t) + \max_{\substack{s_{t+1} \\ s_{t+1}}} V(s_{t+1}) BAD!$

$$V(s_t) = \log \int \exp(Q(s_t, a_t)) da_t \approx \max_{a_t} Q(s_t, a_t)$$

< ロ > < 同 > < 三 > < 三 >

Motivation Probabilistic Inference Variational Inference

Connecting to standard RL

Run loop from t = T - 1 to 1

$$\beta_t(s_t, a_t) = p(\mathcal{O}_t | s_t, a_t) \mathbb{E}_{s_{t+1} \sim p(s_{t+1} | s_t, a_t)} [\beta_{t+1}(s_{t+1})]$$

$$\beta_t(s_t) = \mathbb{E}_{a_t \sim p(a_t | s_t)} [\beta_t(s_t, a_t)]$$

Take logs of both equation. Define,

$$V(s_t) = \log eta_t(s_t)$$

 $Q(s_t, a_t) = \log eta_t(s_t, a_t)$

First equation gives,

$$Q(s_t, a_t) = \log[p(\mathcal{O}_t | s_t, a_t)] + \log \mathbb{E}_{s_{t+1} \sim p(s_{t+1} | s_t, a_t)} [\exp[V(s_{t+1})]]$$

= $r(s_t, a_t) + \max_{\substack{s_{t+1} \\ s_{t+1}}} V(s_{t+1}) BAD!$

Second equation gives,

$$V(s_t) = \log \int \exp(Q(s_t, a_t)) da_t \approx \max_{a_t} Q(s_t, a_t)$$

It is like value iteration algorithm for deterministic dynamics. Problem with stochastic dynamics.

Motivation Probabilistic Inference Variational Inference

Computing Optimal Policy

$$p(a_t|s_t, \mathcal{O}_{1:T}) = \pi(a_t|s_t) = p(a_t|s_t, \mathcal{O}_{t:T})$$

$$= \frac{p(a_t, s_t|\mathcal{O}_{t:T})}{p(s_t|\mathcal{O}_{t:T})}$$

$$= \frac{p(\mathcal{O}_{t:T}|a_t, s_t)p(a_t, s_t)/p(\mathcal{O}_{t:T})}{p(\mathcal{O}_{t:T}|s_t)p(s_t)/p(\mathcal{O}_{t:T})}$$

$$= \frac{\beta_t(s_t, a_t)}{\beta_t(s_t)} = \exp(Q - V) = \exp(A(s_t, a_t))$$

Actions with more advantage are exponentially more likely.

æ

(日)

Motivation Probabilistic Inference Variational Inference

Problem with soft value iteration

Recall we had,

$$egin{aligned} Q(s_t, a_t) &pprox r(s_t, a_t) + \max_{s_{t+1}} V(s_{t+1}) \ V(s_t) &pprox \max_{a_t} Q(s_t, a_t) \end{aligned}$$

The problem stems from the fact that,

$$p(s_{t+1}|s_t, a_t, \mathcal{O}_{1:T}) \neq p(s_{t+1}|s_t, a_t)$$

We would like to find another distribution $q(s_{1:T}, a_{1:T})$ that is close $p(s_{1:T}, a_{1:T} | \mathcal{O}_{1:T})$ but has the dynamics $p(s_{t+1}|s_t, a_t)$.

Motivation Probabilistic Inference Variational Inference

Structured Variational Inference-1

- Find another distribution q(s_{1:T}, a_{1:T}) that is close to p(s_{1:T}, a_{1:T} | O_{1:T}) but has the dynamics p(s_{t+1}|s_t, a_t).
- Let x = O_{1:T} and z = (s_{1:T}, a_{1:T}). Find q(z) to approximate p(z|x). This can be solved by Variational Inference.
- Let $q(s_{1:T}, a_{1:T}) = p(s_1) \prod_t p(s_{t+1}|s_t, a_t) q(a_t|s_t)$

Motivation Probabilistic Inference Variational Inference

Structured Variational Inference-2

Let $x = \mathcal{O}_{1:T}$ and $z = (s_{1:T}, a_{1:T})$. Variational lower bound is given by,

$$\log p(x) \geq \mathbb{E}_{z \sim q(z)}[\log p(x, z) - \log q(z)]$$

Substituting variables we get,

$$\begin{split} \log p(\mathcal{O}_{1:T}) \geq & \mathbb{E}_{(s_{1:T}, a_{1:T}) \sim q}[\log p(s_1) + \sum_{t=1}^{T} \log p(s_{t+1}|s_t, a_t) + \sum_{t=1}^{T} \log p(\mathcal{O}_{1:T}|s_t, a_t)] \\ & - \log p(s_t) - \sum_{t=1}^{T} \log p(s_{t+1}|s_t, a_t) - \sum_{t=1}^{T} \log q(a_t|s_t)] \\ & = & \mathbb{E}_{(s_{1:T}, a_{1:T}) \sim q}[\sum_{t=1}^{T} r(s_t, a_t) - \log q(a_t|s_t)] \\ & = & \sum_{t=1}^{T} \mathbb{E}_{(s_t, a_t) \sim q}[r(s_t, a_t) + \mathcal{H}q(a_t|s_t)] \end{split}$$

Structured Variational Inference-3

Optimizing Variational lower bounds leads to soft value iteration algorithm,

• for t=T-1 to 1:

$$egin{aligned} Q(s,a) \leftarrow r(s,a) + \mathbb{E}[V(s')] \ V(s) \leftarrow ext{softmax}_a(Q(s,a)) \end{aligned}$$

Traditional value iteration has the form,

• for t=T-1 to 1:

$$egin{aligned} Q(s,a) \leftarrow r(s,a) + \mathbb{E}[V(s')] \ V(s) \leftarrow \max_a(Q(s,a)) \end{aligned}$$

Soft Q-Learning Entropy Regularized Policy Gradient Soft actor-critic Algorithm

Desiderata

Introduction

- Classical Conditioning
- Operant Conditioning
- Reinforcement Learning
- 2 Maximum Entropy Reinforcement Learning
 - Motivation
 - Probabilistic Inference
 - Variational Inference

3 Some Generalized Algorithms

- Soft Q-Learning
- Entropy Regularized Policy Gradient
- Soft actor-critic Algorithm

Soft Q-Learning Entropy Regularized Policy Gradient Soft actor-critic Algorithm

Soft Q-Learning

For standard Q-learning,

$$\begin{aligned} Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t, a_t) + \max_a Q(s_{t+1}, a) - Q(s_t, a_t)] \\ \pi(a_t|s_t) \leftarrow \epsilon \text{-greedy}[\operatorname{argmax}_a Q(a, s_t)] \end{aligned}$$

For soft Q-learning,

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t, a_t) + \text{softmax}_a Q(s_{t+1}, a) - Q(s_t, a_t)]$ $\pi(a_t | s_t) \leftarrow \exp(A(s_t, a_t))$

Soft Q-Learning Entropy Regularized Policy Gradient Soft actor-critic Algorithm

Policy Gradient

For standard Policy Gradient,

• Total average return is,

$$J(\theta) = \sum_{t=0}^{T} \mathbb{E}_{\pi} \left[r(s_t, a_t) \right]$$

• Perform gradient ascent on θ ,

$$\theta \leftarrow \theta + \alpha \nabla J(\theta) = \theta + \alpha \sum_{t=1}^{T} \mathbb{E}_{a_t \sim \pi(a_t|s_t)} \left[(r(s_t, a_t) - b_t) \nabla \log \pi_{\theta}(a_t|s_t) \right]$$

For Entropy Regularized Policy Gradient,

• Total average return is,

$$J(heta) = \sum_{t=0}^{T} \mathbb{E}_{\pi} \left[r(s_t, a_t) + \mathcal{H}(q(a_t|s_t))
ight]$$

• Perform gradient ascent on θ ,

$$\theta \leftarrow \theta + \alpha \nabla J(\theta) = \theta + \alpha \sum_{t=1}^{T} \mathbb{E}_{(s_t, a_t) \sim q(s_t, a_t)} [\nabla_{\theta} \log q_{\theta}(a_t | s_t) A(s_t, a_t)]$$

Soft Q-Learning Entropy Regularized Policy Gradient Soft actor-critic Algorithm

Soft actor-critic Algorithm

• Critic: Update Q-function to evaluate current policy:

$$Q(s,a) \leftarrow \mathsf{r}(s,a) + \mathbb{E}_{s' \sim
ho_{s,a'} \sim \pi}[Q(s',a') - \log \pi(a'|s')]$$

This converges to Q^{π} .

• Actor: Update the policy with gradient of information projection:

$$\pi_{\textit{new}} = \arg\min_{\pi'} D_{\textit{KL}}\left(\pi'(.|s)||rac{1}{\mathcal{Z}}\exp Q^{\pi_{\textit{old}}}(s,.)
ight)$$

In practice, only take one gradient step on this objective