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Introduction

Classical Conditioning
(Pavlov)

Reward associated
with stimuli (or
state), r(st)

Motivates TD
learning

Operant
Conditioning

(Thorndike, Skinner)

Reward associated
with actions, r(at)

Motivates Policy
Gradient for
multi-arm bandits

Reinforcement
Learning

Reward associated
with both stimuli
and actions, r(st , at)

Motivates
Q-learning,
actor-critic learning
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Reward Prediction Error Hypothesis

Dopamine neurons in VTA
were recorded in classical
conditioning experiment
(Schultz, et.al. 1997)

Define value function, V (st )
which measures predicted
reward

Dopamine response can be
modelled as,

δ(t) = r(st ) +
dV

dt

= r(st ) + V (st+1)− V (st )

δ(t) is RPE

Value function can be learnt
by Temporal Difference(TD)
learning algorithm. Update
rule:

V (st )← V (st ) + αδ(t)

Achint Kumar CTN Meeting 5 / 30



Introduction
Maximum Entropy Reinforcement Learning

Some Generalized Algorithms

Classical Conditioning
Operant Conditioning
Reinforcement Learning

Mult-arm bandit problem

Each bandit(slot machine)
has a reward probability
distribution. Find a policy
π(a) that maximizes total
reward:

max
π

T∑
t=0

Eπ [r(at)]

Mult-arm bandit (slot machines)
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Policy Gradient algorithm

Parameterize policy with θ as πθ(at). For bandit problem it could be
softmax function,

πθ(at) =
eθat∑
b e

θb

Total average return is,

J(θ) =
T∑
t=0

Eπ [r(at)]

Perform gradient ascent on θ,

θ ← θ + α∇J(θ)

= θ + α

T∑
t=1

∑
at

[r(at)∇πθ(at)]

= θ + α

T∑
t=1

∑
at

[(r(at)− bt)∇πθ(at)] , including baseline
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Reinforcement Learning

Value function V (s)→ Q(s, a),A(s, a)

Reward function r(a), r(s)→ r(a, s)

Policy function π(a)→ π(a|s)

Advantage function is defined as,

A(s, a) = Q(s, a)− V (s)

The elements are closely related to reward r(s, a)
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Classical Conditioning to Reinforcement Learning
We saw for classical conditioning,

V (st)← V (st) + α[r(st) + V (st+1)− V (st)]

For reinforcement learning replace V (st)→ Q(st , at).
Algorithm:

1 Initialize Q(s,a) randomly. Q(FINAL,.)=0

2 Use ϵ−greedy to determine policy π(a|s)
3 Go from state-action st , at to st+1 using policy, π(a|st).
4 Update action-value function using on-policy learning (SARSA algorithm),

Q(st , at)← Q(st , at) + α[r(st , at) + Q(st+1, at+1)− Q(st , at)]

where at+1 derived from policy π(a|st+1).

Alternatively, update action-value function using off-policy learning
(Q-learning algorithm)

Q(st , at)← Q(st , at) + α[r(st , at) + max
a

Q(st+1, a)− Q(st , at)]

5 Repeat 1-4 till st+1 is final state.

6 Repeat 5 until Q function stabilizes.
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Q Learning

Q function update rule is given by,

Q(st , at)← Q(st , at) + α[r(st , at) + max
a

Q(st+1, a)− Q(st , at)]

we will see generalization of this rule (soft Q-learning) later.
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Operant Conditioning to Reinforcement Learning

Earlier we saw, policy gradient algorithm.

1 Parameterize policy, πθ(a|s) (more general than before)
2 Optimize average expected reward, J(θ) by,

θt+1 = θt + α∇J(θt)

In actor-critic learning, we parameterize both policy and value(or Q
or A) function. It combines policy gradient with TD learning.

1 Parameterize policy, πθ(a|s) with θ and value, Vw (s) with w .
2 In state s, take action a and observe s ′ and r(s, a). Update θ

and w by,

w ← w + αwδ∇Vw (s)

θ ← θ + αθδ∇ log πθ(a|s)

where δ = r(s, a) + V (s ′)− V (s)
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Actor-Critic Model

Actor: Dorsal Striatum
Critic: Ventral Striatum. Sends TD error to actor,

Good action, δ > 0

Bad action, δ < 0

TD Error: VTA
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Introduction

1 Regular formulation:

max
π

E

[
H∑
t=0

rt

]

2 Maximum entropy formulation

max
π

E

[
H∑
t=0

rt + βH(π(at |st))

]
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Motivation-1

Stochastic behaviour is more
robust in constantly
changing environments

Ability to model suboptimal
behaviour is useful for
inverse RL (determining
reward function from
behaviour)
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Motivation-2

We assume that there are observable binary optimality
variables Ot where, Ot = 1 denotes time step t is optimal and
Ot = 0 denotes that it is not optimal. We define,

p(Ot = 1|st , at) = exp(r(st , at))

Note, all rewards must be negative for normalizability. There
is no loss of generality.
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Applying Bayes Rule

Let τ = {s1:T , a1:T}. By Bayes rule,

p(τ |O1:T = 1) =
p(τ)p(O1:T = 1|τ)

p(O1:T = 1)

∝ p(s1)
T∏
t=1

p(st+1|st , at) exp(r(st , at))

=

[
p(s1)

T∏
t=1

p(st+1|st , at)

]
exp(

T∑
t=1

r(st , at))

Most probable trajectory is one with highest reward. But
suboptimal trajectories are also possible with exponentially
decreasing probability.

Explains stochastic monkey behaviour.
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Policy Search as Probabilistic Inference

Goal is to find optimal policy π(at |st ,Ot:T ). This will be done by
computing backward messages. We will need,

State-action backward message: βt(st , at) = p(Ot:T |st , at). It
is probability of optimality from time t to T given that it
begins at (st , at).

State backward message: βt(st) = p(Ot:T |st). It is probability
of optimality from time t to T given that it begins at st .

βt(st) = p(Ot:T |st) =
ˆ

p(Ot:T |st , at)p(at |st) dat

= Eat∼p(at |st)[βt(st , at)]

Action prior, p(at |st) is assumed to be uniform without loss of
generality.
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Message Passing Algorithm for backward message-1

The recursive message passing algorithm for computing βt(st , at)
proceeds from the last time step t = T backward through time to
t = 1. Base case, at t = T ,

βt(sT , aT ) = p(OT |sT , aT ) = exp(r(sT , aT ))

Recursive case is given as following,

βt(st , at) = p(O1:t |st , at) =
ˆ

p(Ot:T , st+1|st , at)dst+1

= p(Ot |st , at)
ˆ

p(Ot+1:T |st+1)p(st+1|st , at)dst+1

= p(Ot |st , at)[Est+1∼p(st+1|st ,at)[βt+1(st+1)]
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Message Passing Algorithm for backward message-2

1 Base case:

βT (sT , aT ) = p(OT |sT , aT ) = exp(r(sT , aT ))

βT (stT = EaT∼p(aT |sT )[βT (sT , aT )]

2 Run loop from t = T − 1 to 1

βt(st , at) = p(Ot |st , at)Est+1∼p(st+1|st ,at)[βt+1(st+1)]

βt(st) = Eat∼p(at |st)[βt(st , at)]
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Connecting to standard RL
Run loop from t = T − 1 to 1

βt(st , at) = p(Ot |st , at)Est+1∼p(st+1|st ,at )[βt+1(st+1)]

βt(st) = Eat∼p(at |st )[βt(st , at)]

Take logs of both equation. Define,

V (st) = log βt(st)

Q(st , at) = log βt(st , at)

First equation gives,

Q(st , at) = log[p(Ot |st , at)] + logEst+1∼p(st+1|st ,at )[exp[V (st+1)]]

= r(st , at) + max
st+1

V (st+1) BAD!

Second equation gives,

V (st) = log

ˆ
exp(Q(st , at))dat ≈ max

at
Q(st , at)

It is like value iteration algorithm for deterministic dynamics. Problem with
stochastic dynamics.
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Computing Optimal Policy

p(at |st ,O1:T ) = π(at |st) = p(at |st ,Ot:T )

=
p(at , st |Ot:T )

p(st |Ot:T )

=
p(Ot:T |at , st)p(at , st)/p(Ot:T )

p(Ot:T |st)p(st)/p(Ot:T )

=
βt(st , at)

βt(st)
= exp(Q − V ) = exp(A(st , at))

Actions with more advantage are exponentially more likely.
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Problem with soft value iteration

Recall we had,

Q(st , at) ≈ r(st , at) + max
st+1

V (st+1)

V (st) ≈ max
at

Q(st , at)

The problem stems from the fact that,

p(st+1|st , at ,O1:T ) ̸= p(st+1|st , at)

We would like to find another distribution q(s1:T , a1:T ) that is
close p(s1:T , a1:T |O1:T ) but has the dynamics p(st+1|st , at).
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Structured Variational Inference-1

Find another distribution q(s1:T , a1:T ) that is close to
p(s1:T , a1:T |O1:T ) but has the dynamics p(st+1|st , at).
Let x = O1:T and z = (s1:T , a1:T ). Find q(z) to approximate
p(z |x). This can be solved by Variational Inference.

Let q(s1:T , a1:T ) = p(s1)
∏

t p(st+1|st , at)q(at |st)
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Structured Variational Inference-2

Let x = O1:T and z = (s1:T , a1:T ). Variational lower bound is given by,

log p(x) ≥ Ez∼q(z)[log p(x , z)− log q(z)]

Substituting variables we get,

log p(O1:T ) ≥E(s1:T ,a1:T )∼q[log p(s1) +
T∑
t=1

log p(st+1|st , at) +
T∑
t=1

log p(O1:T |st , at)]

− log p(st)−
T∑
t=1

log p(st+1|st , at)−
T∑
t=1

log q(at |st)]

= E(s1:T ,a1:T )∼q[
T∑
t=1

r(st , at)− log q(at |st)]

=
T∑
t=1

E(st ,at )∼q[r(st , at) +Hq(at |st)]
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Structured Variational Inference-3

Optimizing Variational lower bounds leads to soft value iteration
algorithm,

for t=T-1 to 1:

Q(s, a)← r(s, a) + E[V (s ′)]

V (s)← softmaxa(Q(s, a))

Traditional value iteration has the form,

for t=T-1 to 1:

Q(s, a)← r(s, a) + E[V (s ′)]

V (s)← max
a

(Q(s, a))
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Soft Q-Learning

For standard Q-learning,

Q(st , at)← Q(st , at) + α[r(st , at) + max
a

Q(st+1, a)− Q(st , at)]

π(at |st)← ϵ-greedy[argmaxaQ(a, st)]

For soft Q-learning,

Q(st , at)← Q(st , at) + α[r(st , at) + softmaxaQ(st+1, a)− Q(st , at)]

π(at |st)← exp(A(st , at))
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Policy Gradient
For standard Policy Gradient,

Total average return is,

J(θ) =
T∑
t=0

Eπ [r(st , at)]

Perform gradient ascent on θ,

θ ← θ + α∇J(θ) = θ + α

T∑
t=1

Eat∼π(at |st ) [(r(st , at)− bt)∇ log πθ(at |st)]

For Entropy Regularized Policy Gradient,

Total average return is,

J(θ) =
T∑
t=0

Eπ [r(st , at) +H(q(at |st))]

Perform gradient ascent on θ,

θ ← θ + α∇J(θ) = θ + α
T∑
t=1

E(st ,at )∼q(st ,at )[∇θ log qθ(at |st)A(st , at)]
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Soft actor-critic Algorithm

Critic: Update Q-function to evaluate current policy:

Q(s, a)← r(s, a) + Es′∼ps ,a′∼π[Q(s ′, a′)− log π(a′|s ′)]

This converges to Qπ.

Actor: Update the policy with gradient of information
projection:

πnew = argmin
π′

DKL

(
π′(.|s)|| 1

Z
expQπold (s, .)

)
In practice, only take one gradient step on this objective
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